Search results for "ELECTRON MICROSCOPY"

showing 10 items of 706 documents

Cryo-EM structure of ssDNA bacteriophage ΦCjT23 provides insight into early virus evolution.

2022

AbstractThe origin of viruses remains an open question. While lack of detectable sequence similarity hampers the analysis of distantly related viruses, structural biology investigations of conserved capsid protein structures facilitate the study of distant evolutionary relationships. Here we characterize the lipid-containing ssDNA temperate bacteriophage ΦCjT23, which infects Flavobacterium sp. (Bacteroidetes). We report ΦCjT23-like sequences in the genome of strains belonging to several Flavobacterium species. The virion structure determined by cryogenic electron microscopy reveals similarities to members of the viral kingdom Bamfordvirae that currently consists solely of dsDNA viruses wit…

/631/326/1321bacteriophagesviruksetcryoelectron microscopyevoluutioGeneral Physics and AstronomyelektronimikroskopiaDNA Single-Stranded/45/23FlavobacteriumGeneral Biochemistry Genetics and Molecular Biologybakteriofagit/631/45/535/1258/1259viral evolution/631/326/596/2554BacteriophagesMultidisciplinaryfylogenia/45fylogenetiikkaCryoelectron Microscopy/101/28articleGeneral Chemistryperimä1182 Biochemistry cell and molecular biologyCapsid Proteins
researchProduct

Low energy nano diffraction (LEND) – A versatile diffraction technique in SEM

2019

Abstract Electron diffraction is a powerful characterization method that is used across different fields and in different instruments. In particular, the power of transmission electron microscopy (TEM) largely relies on the capability to switch between imaging and diffraction mode enabling identification of crystalline phases and in-depth studies of crystal defects, to name only examples. In contrast, while diffraction techniques have found their way into the realm of scanning electron microscopy (SEM) in the form of electron backscatter diffraction and related techniques, on-axis transmission diffraction is still in its infancy. Here we present a simple but versatile setup that enables a ‘…

010302 applied physicsDiffractionMaterials scienceGrapheneScanning electron microscopebusiness.industry02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesCrystallographic defectAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic Materialslaw.inventionCharacterization (materials science)Electron diffractionlawTransmission electron microscopy0103 physical sciencesOptoelectronics0210 nano-technologybusinessInstrumentationElectron backscatter diffractionUltramicroscopy
researchProduct

Superparamagnetic recoverable flowerlike Fe3O4@Bi2O3 core–shell with g-C3N4 sheet nanocomposite: synthesis, characterization, mechanism and kinetic s…

2019

In the present research study, a simple method was developed for the synthesis of three-dimensional flowerlike Fe3O4@Bi2O3 core–shell with g-C3N4 sheet nanocomposites. The X-ray diffraction, Fourier transform infrared spectroscopy, scanning electronic microscopy, transmission electron microscope, vibrating sample magnetometer, dynamic laser scattering analyzer and UV–Vis diffuse reflection spectroscopy were employed for the characterization of structure, purity and morphology of the resultant samples. The degradation of indigo carmine as a model of organic dye pollutant is applied for photo-catalytic activity. The parameters which are affecting the efficiency of various parameters, such as;…

010302 applied physicsDiffractionNanocompositeMaterials scienceKineticsAnalytical chemistryElectronCondensed Matter Physics01 natural sciencesAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic Materialsflowerlike Fe3O4@Bi2O3 core-shell g-C3N4 superparamagnetic photocatalysischemistry.chemical_compoundIndigo carminechemistryTransmission electron microscopySettore CHIM/03 - Chimica Generale E Inorganica0103 physical sciencesSettore CHIM/07 - Fondamenti Chimici Delle TecnologieElectrical and Electronic EngineeringFourier transform infrared spectroscopySuperparamagnetism
researchProduct

A consistent path for phase determination based on transmission electron microscopy techniques and supporting simulations.

2018

This work addresses aspects for the analysis of industrial relevant materials via transmission electron microscopy (TEM). The complex phase chemistry and structural diversity of these materials require several characterization techniques to be employed simultaneously; unfortunately, different characterization techniques often lack connection to yield a complete and consistent picture. This paper describes a continuous path, starting with the acquisition of 3D diffraction data - alongside classical high-resolution imaging techniques - and linking the structural characterization of hard metal industrial samples with energy-loss fine-structure simulations, quantitative electron energy-loss (EE…

010302 applied physicsDiffractionOffset (computer science)Hard metalGeneral Physics and AstronomyStructural diversity02 engineering and technologyCell BiologyElectron021001 nanoscience & nanotechnology01 natural sciencesHard metalsStructural BiologyTransmission electron microscopy0103 physical sciencesGeneral Materials Science0210 nano-technologySpectroscopyBiological systemMicron (Oxford, England : 1993)
researchProduct

The effects of thermal treatment on structural, morphological and optical properties of electrochemically deposited Bi2S3 thin films

2017

Abstract Thin films of bismuth sulfide (Bi 2 S 3 ) have been electrochemically deposited on indium–doped tin oxide substrates from aqueous solutions of Bi(NO 3 ) 3 , ethylene diamine tetraacetic acid (EDTA) and Na 2 S 2 O 3 . The structural properties of the films were characterized using X–ray diffraction and high–resolution transmission electron microscopy analyses. The film crystallizes in an orthorhombic structure of Bi 2 S 3 along with metallic bismuth. Thermal annealing of the prepared film in sulfur atmosphere improves its crystallinity and cohesion. The band gap values of the deposited film before and after annealing at 400 °C were found to be 1.28 and 1.33 eV, respectively.

010302 applied physicsMaterials scienceAnnealing (metallurgy)Band gapInorganic chemistryMetals and Alloyschemistry.chemical_element02 engineering and technologySurfaces and InterfacesThermal treatment021001 nanoscience & nanotechnologyTin oxide01 natural sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsBismuthCrystallinitychemistryChemical engineeringTransmission electron microscopy0103 physical sciencesMaterials ChemistryThin film0210 nano-technologyThin Solid Films
researchProduct

Flash annealing influence on structural and electrical properties of TiO2/TiO/Ti periodic multilayers

2014

Abstract Multilayered structures with a 40 nm period composed of titanium and two different titanium oxides, TiO and TiO 2 , were accurately produced by DC magnetron sputtering using the reactive gas pulsing process. These multilayers were sputtered onto Al 2 O 3 sapphire to avoid substrate compound diffusion during flash annealing (ranging from 350 °C to 550 °C). Structure and composition of these periodic TiO 2 /TiO/Ti stacks were investigated by X-ray diffraction, X-ray photoemission spectroscopy and transmission electronic microscopy techniques. Two crystalline phases α-Ti and fcc-TiO were identified in the metallic-rich sub-layers whereas the oxygen-rich ones were composed of a mixture…

010302 applied physicsMaterials scienceAnnealing (metallurgy)Metals and Alloyschemistry.chemical_element02 engineering and technologySurfaces and InterfacesSputter deposition021001 nanoscience & nanotechnology01 natural sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsAmorphous solidCrystallinitychemistryChemical engineeringRutileElectrical resistivity and conductivity0103 physical sciencesMaterials Chemistry[ SPI.NANO ] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics0210 nano-technologyHigh-resolution transmission electron microscopyTitanium
researchProduct

Structural characterization of TiO2/TiN O (δ-doping) heterostructures on (1 1 0)TiO2 substrates

2003

Abstract TiO2/TiNxOy δ-doping structures were grown on the top of (1 1 0)TiO2 rutile substrates by low pressure metal-organic vapor phase epitaxy (LP-MOVPE) technique at 750 °C. The samples were analyzed by high resolution transmission electron microscopy (HRTEM), electron energy loss spectroscopy (EELS) and X-ray diffraction techniques (rocking curves and φ-scans). The presence of satellites in the (1 1 0)TiO2 rocking curve revealed the epitaxial growth of 10 period δ-doping structures. The thickness of the TiO2 layers, 84 nm, was deduced from the satellites period. HRTEM observations showed around 1.5 nm thick δ-doping layers, where the presence of nitrogen was detected by EELS. The analy…

010302 applied physicsMaterials scienceElectron energy loss spectroscopyGeneral Physics and Astronomy02 engineering and technologySurfaces and InterfacesGeneral Chemistry021001 nanoscience & nanotechnologyCondensed Matter PhysicsEpitaxy01 natural sciencesElectron spectroscopySurfaces Coatings and FilmsCrystallographySurface coatingTransmission electron microscopy0103 physical sciencesX-ray crystallography[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]Metalorganic vapour phase epitaxy0210 nano-technologyHigh-resolution transmission electron microscopyComputingMilieux_MISCELLANEOUS
researchProduct

The interdependence of structural and electrical properties in TiO2/TiO/Ti periodic multilayers

2013

International audience; Multilayered structures with 14-50 nm periods composed of titanium and two different titanium oxides, TiO and TiO2, were accurately produced by DC magnetron sputtering using the reactive gas pulsing process. The structure and composition of these periodic TiO2/TiO/Ti stacks were investigated by X-ray diffraction and transmission electronic microscopy techniques. Two crystalline phases, hexagonal close packed Ti and face centred cubic TiO, were identified in the metallic-rich sub-layers, whereas the oxygen-rich ones comprised a mixture of amorphous TiO2 and rutile phase. DC electrical resistivity rho measured for temperatures ranging from 300 to 500 K exhibited a meta…

010302 applied physicsMaterials sciencePolymers and PlasticsMetals and AlloysAnalytical chemistrychemistry.chemical_elementNanotechnology02 engineering and technologySputter deposition021001 nanoscience & nanotechnology01 natural sciencesElectronic Optical and Magnetic MaterialsAmorphous solidchemistryElectrical resistivity and conductivityHall effectRutile0103 physical sciencesCeramics and Composites[ SPI.NANO ] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics0210 nano-technologyHigh-resolution transmission electron microscopyTemperature coefficientTitanium
researchProduct

Induced crystallographic changes in Cd1−xZnxO films grown on r-sapphire by AP-MOCVD: the effects of the Zn content when x ≤ 0.5

2020

High-resolution X-ray diffraction, scanning electron microscopy and transmission electron microscopy techniques were used to investigate, as a function of the nominal Zn content in the range of 0–50%, the out-of-plane and in-plane crystallographic characteristics of Cd1−xZnxO films grown on r-plane sapphire substrates via atmospheric pressure metal–organic chemical vapor deposition. The study is conducted to search for knowledge relating to the structural details during the transition process from a rock-salt to a wurtzite structure as the Zn content increases in this CdO–ZnO system. It has been found that it is possible to obtain films exhibiting a single (001) cubic orientation with good …

010302 applied physicsMaterials scienceScanning electron microscope02 engineering and technologyGeneral ChemistryChemical vapor deposition021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesCrystallographyTransmission electron microscopy0103 physical sciencesSapphireGeneral Materials ScienceOrthorhombic crystal systemCrystalliteMetalorganic vapour phase epitaxy0210 nano-technologyWurtzite crystal structureCrystEngComm
researchProduct

Formation of translucent nanostructured zirconia ceramics

2021

Abstract In this work the mechanisms that affect the optical transparency of nanostructured translucent ZrO2 ceramics are studied. The translucent ceramic samples were obtained from a low agglomeration nanosized powder at low pressure and low temperature sintering. Even low pressures cause structural changes and defect creation in the nanocrystals. Annealing was used to study the grain formation, structure and impact of defects. Significant changes in translucency were observed with increase in pore size. In order to further understand the defect creation, the obtained ceramics were doped with Er3+ ions and studied optically. Photoluminescence studies revealed a change in the ratio of green…

010302 applied physicsQuenchingMaterials sciencePhotoluminescenceScanning electron microscopeAnnealing (metallurgy)Sintering02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesChemical engineeringTransmission electron microscopyvisual_art0103 physical sciencesMaterials ChemistryCeramics and Compositesvisual_art.visual_art_mediumCubic zirconiasense organsCeramic0210 nano-technologyJournal of the European Ceramic Society
researchProduct